

Welcome to HAP-python’s documentation!

This documentation contains everything you need to know about
HAP-python.

Getting Help

Having Trouble? Post an issue on the GitHub repo, with as much
information as possible about your issue.

First Steps

	HAP-python at a glance

	Brief explanation of HAP-python, and the possible use cases.

	Installation Guide

	How to install HAP-python on a Debian based system, such as
a Raspberry Pi, or Ubuntu.

	Tutorials

	Get started building your first HomeKit Accessory.

	Examples

	A set of prebuilt accessories to either build your own class
around, or to use as a starting point into your own custom
Accessory class.

API Reference

	API Index

	API documentation for HAP-python.

HAP-python at a glance

HAP-python is an application framework to build out Accessories or Bridges
for Apple’s HomeKit protocol.

Need to fill in the rest.

Installation Guide

Before We Begin

HAP-python requires Python 3.4+.
This guide will cover the current version of Raspbian and Ubuntu LTS.
It is somewhat safe to assume the process for newer versions of Ubuntu
will work.

Installing Pre-Requisites

Raspbian Stretch

As a prerequisite, you will need Avahi/Bonjour installed (due to zeroconf package):

sudo apt install libavahi-compat-libdnssd-dev

Ubuntu 16.04 LTS

Same with Raspbian, we will need to install Avahi/Bonjour, but a fresh 16.04 install will
require the python3-dev package as well:

sudo apt install libavahi-compat-libdnssd-dev python3-dev

Installing HAP-python

Make a directory for your project, and cd into it:

~ $ mkdir hk_project
~ $ cd hk_project
~/hk_project $

It is best to use a virtualenv for most Python projects, we can use one here as well.
Make sure that you have the venv module installed for Python 3:

sudo apt install python3-venv

To create a virtualenv and activate it, simply run these commands inside your project
directory:

python3 -m venv venv
source venv/bin/activate

Because we used a Python 3 virtualenv and activated it, we can install HAP-python
with pip:

pip install HAP-python

Tutorials

Need to fill in

Examples

Need to fill in

API Index

	Accessory

	AccessoryDriver

	Bridge

	Characteristic

	Loader

	Service

	State

	Util

Accessory

Base class for HAP Accessories.

	
class pyhap.accessory.Accessory(driver, display_name, aid=None, iid_manager=None)

	A representation of a HAP accessory.

Inherit from this class to build your own accessories.

	
add_info_service()

	Helper method to add the required AccessoryInformation service.

Called in __init__ to be sure that it is the first service added.
May be overridden.

	
add_preload_service(service, chars=None, unique_id=None)

	Create a service with the given name and add it to this acc.

	
add_protocol_version_service()

	Helper method to add the required HAP Protocol Information service

	
add_service(*servs)

	Add the given services to this Accessory.

This also assigns unique IIDS to the services and their Characteristics.

Note

Do not add or remove characteristics from services that have been added
to an Accessory, as this will lead to inconsistent IIDs.

	Parameters

	servs – Variable number of services to add to this Accessory.

	Type

	Service

	
available

	Accessory is available.

If available is False, get_characteristics will return
SERVICE_COMMUNICATION_FAILURE for the accessory which will
show as unavailable.

Expected to be overridden.

	
get_characteristic(aid, iid)

	Get the characteristic for the given IID.

The AID is used to verify if the search is in the correct accessory.

	
get_service(name)

	Return a Service with the given name.

A single Service is returned even if more than one Service with the same name
are present.

	Parameters

	name (str) – The display_name of the Service to search for.

	Returns

	A Service with the given name or None if no such service exists in this
Accessory.

	Return type

	Service

	
publish(value, sender, sender_client_addr=None, immediate=False)

	Append AID and IID of the sender and forward it to the driver.

Characteristics call this method to send updates.

	Parameters

	
	data (dict) – Data to publish, usually from a Characteristic.

	sender – The Service or Characteristic from which the call originated.

	Type

	Service or Characteristic

	
run()

	Called when the Accessory should start doing its thing.

Called when HAP server is running, advertising is set, etc.
Can be overridden with a normal or async method.

	
static run_at_interval(seconds)

	Decorator that runs decorated method every x seconds, until stopped.

Can be used with normal and async methods.

@Accessory.run_at_interval(3)
def run(self):
 print("Hello again world!")

	Parameters

	seconds (float) – The amount of seconds to wait for the event to be set.
Determines the interval on which the decorated method will be called.

	
set_info_service(firmware_revision=None, manufacturer=None, model=None, serial_number=None)

	Quick assign basic accessory information.

	
set_primary_service(primary_service)

	Set the primary service of the acc.

	
setup_message()

	Print setup message to console.

For QRCode base36, pyqrcode are required.
Installation through pip install HAP-python[QRCode]

	
stop()

	Called when the Accessory should stop what is doing and clean up any resources.

Can be overridden with a normal or async method.

	
to_HAP()

	A HAP representation of this Accessory.

	Returns

	A HAP representation of this accessory. For example:

{ "aid": 1,
 "services": [{
 "iid" 2,
 "type": ...,
 ...
 }]
}

	Return type

	dict

	
xhm_uri()

	Generates the X-HM:// uri (Setup Code URI)

	Return type

	str

AccessoryDriver

Accessory Driver class to host an Accessory.

	
class pyhap.accessory_driver.AccessoryDriver(*, address=None, port=51234, persist_file='accessory.state', pincode=None, encoder=None, loader=None, loop=None, mac=None, listen_address=None, advertised_address=None, interface_choice=None, async_zeroconf_instance=None, zeroconf_server=None)

	An AccessoryDriver mediates between incoming requests from the HAPServer and
the Accessory.

The driver starts and stops the HAPServer, the mDNS advertisements and responds
to events from the HAPServer.

	
accessories_hash

	Hash the get_accessories response to track configuration changes.

	
add_accessory(accessory)

	Add top level accessory to driver.

	
add_job(target, *args)

	Add job to executor pool.

	
async_add_job(target, *args)

	Add job from within the event loop.

	
async_persist()

	Saves the state of the accessory.

Must be run in the event loop.

	
async_send_event(topic, data, sender_client_addr, immediate)

	Send an event to a client.

Must be called in the event loop

	
async_start()

	Starts the accessory.

	Call the accessory’s run method.

	Start handling accessory events.

	Start the HAP server.

	Publish a mDNS advertisement.

	Print the setup QR code if the accessory is not paired.

All of the above are started in separate threads. Accessory thread is set as
daemon.

	
async_stop()

	Stops the AccessoryDriver and shutdown all remaining tasks.

	
async_subscribe_client_topic(client, topic, subscribe=True)

	(Un)Subscribe the given client from the given topic.

This method must be run in the event loop.

	Parameters

	
	client (tuple <str, int>) – A client (address, port) tuple that should be subscribed.

	topic (str) – The topic to which to subscribe.

	subscribe (bool) – Whether to subscribe or unsubscribe the client. Both subscribing
an already subscribed client and unsubscribing a client that is not subscribed
do nothing.

	
async_update_advertisement()

	Updates the mDNS service info for the accessory from the event loop.

	
config_changed()

	Notify the driver that the accessory’s configuration has changed.

Persists the accessory, so that the new configuration is available on
restart. Also, updates the mDNS advertisement, so that iOS clients know they need
to fetch new data.

	
connection_lost(client)

	Called when a connection is lost to a client.

This method must be run in the event loop.

	Parameters

	client (tuple <str, int>) – A client (address, port) tuple that should be unsubscribed.

	
finish_pair()

	Finishing pairing or unpairing.

Updates the accessory and updates the mDNS service.

The mDNS announcement must not be updated until AFTER
the final pairing response is sent or homekit will
see that the accessory is already paired and assume
it should stop pairing.

	
get_accessories()

	Returns the accessory in HAP format.

	Returns

	An example HAP representation is:

{
 "accessories": [
 "aid": 1,
 "services": [
 "iid": 1,
 "type": ...,
 "characteristics": [{
 "iid": 2,
 "type": ...,
 "description": "CurrentTemperature",
 ...
 }]
]
]
}

	Return type

	dict

	
get_characteristics(char_ids)

	Returns values for the required characteristics.

	Parameters

	char_ids (list<str>) – A list of characteristic “paths”, e.g. “1.2” is aid 1, iid 2.

	Returns

	Status success for each required characteristic. For example:

{
 "characteristics: [{
 "aid": 1,
 "iid": 2,
 "status" 0
 }]
}

	Return type

	dict

	
load()

	Load the persist file.

Must run in executor.

	
pair(client_username_bytes: bytes, client_public: bytes, client_permissions: bytes) → bool

	Called when a client has paired with the accessory.

Persist the new accessory state.

	Parameters

	
	client_username_bytes (bytes) – The client username bytes.

	client_public (bytes) – The client’s public key.

	client_permissions (bytes (int)) – The client’s permissions.

	Returns

	Whether the pairing is successful.

	Return type

	bool

	
persist()

	Saves the state of the accessory.

Must run in executor.

	
prepare(prepare_query, client_addr)

	Called from HAPServerHandler when iOS wants to prepare a write.

	Parameters

	prepare_query – A prepare query. For example:

{
 "ttl": 10000, # in milliseconds
 "pid": 12345678,
}

	
publish(data, sender_client_addr=None, immediate=False)

	Publishes an event to the client.

The publishing occurs only if the current client is subscribed to the topic for
the aid and iid contained in the data.

	Parameters

	data (dict) – The data to publish. It must at least contain the keys “aid” and
“iid”.

	
set_characteristics(chars_query, client_addr)

	Called from HAPServerHandler when iOS configures the characteristics.

	Parameters

	chars_query – A configuration query. For example:

{
 "characteristics": [{
 "aid": 1,
 "iid": 2,
 "value": False, # Value to set
 "ev": True # (Un)subscribe for events from this characteristics.
 }]
}

	
setup_srp_verifier()

	Create an SRP verifier for the accessory’s info.

	
signal_handler(_signal, _frame)

	Stops the AccessoryDriver for a given signal.

An AccessoryDriver can be registered as a signal handler with this method. For
example, you can register it for a KeyboardInterrupt as follows:
>>> import signal
>>> signal.signal(signal.SIGINT, anAccDriver.signal_handler)

Now, when the user hits Ctrl+C, the driver will stop its accessory, the HAP server
and everything else that needs stopping and will exit gracefully.

	
start()

	Start the event loop and call start_service.

Pyhap will be stopped gracefully on a KeyBoardInterrupt.

	
start_service()

	Start the service.

	
stop()

	Method to stop pyhap.

	
unpair(client_uuid)

	Removes the paired client from the accessory.

Persist the new accessory state.

	Parameters

	client_uuid (uuid.UUID) – The client uuid.

	
update_advertisement()

	Updates the mDNS service info for the accessory.

Bridge

Bridge Class to host multiple HAP Accessories.

	
class pyhap.accessory.Bridge(driver, display_name, iid_manager=None)

	A representation of a HAP bridge.

A Bridge can have multiple Accessories.

	
add_accessory(acc)

	Add the given Accessory to this Bridge.

Every Accessory in a Bridge must have an AID and this AID must be
unique among all the Accessories in the same Bridge. If the given
Accessory’s AID is None, a unique AID will be assigned to it. Otherwise,
it will be verified that the AID is not the standalone aid (STANDALONE_AID)
and that there is no other Accessory already in this Bridge with that AID.

Note

A Bridge cannot be added to another Bridge.

	Parameters

	acc (Accessory) – The Accessory to be bridged.

	Raises

	ValueError – When the given Accessory is of category CATEGORY_BRIDGE
or if the AID of the Accessory clashes with another Accessory already in this
Bridge.

	
get_characteristic(aid, iid)

	
See also

Accessory.to_HAP

	
run()

	Schedule tasks for each of the accessories’ run method.

	
stop()

	Calls stop() on all contained accessories.

	
to_HAP()

	Returns a HAP representation of itself and all contained accessories.

See also

Accessory.to_HAP

Characteristic

Characteristic Base class for a HAP Accessory Service.

See also

pyhap.service.Service

	
class pyhap.characteristic.Characteristic(display_name, type_id, properties, allow_invalid_client_values=False, unique_id=None)

	Represents a HAP characteristic, the smallest unit of the smart home.

A HAP characteristic is some measurement or state, like battery status or
the current temperature. Characteristics are contained in services.
Each characteristic has a unique type UUID and a set of properties,
like format, min and max values, valid values and others.

	
client_update_value(value, sender_client_addr=None)

	Called from broker for value change in Home app.

Change self.value to value and call callback.

	
classmethod from_dict(name, json_dict, from_loader=False)

	Initialize a characteristic object from a dict.

	Parameters

	json_dict (dict) – Dictionary containing at least the keys Format,
Permissions and UUID

	
get_value()

	This is to allow for calling getter_callback

	Returns

	Current Characteristic Value

	
notify(sender_client_addr=None)

	Notify clients about a value change. Sends the value.

See also

accessory.publish

See also

accessory_driver.publish

	
override_properties(properties=None, valid_values=None)

	Override characteristic property values and valid values.

	Parameters

	
	properties (dict) – Dictionary with values to override the existing
properties. Only changed values are required.

	valid_values (dict) – Dictionary with values to override the existing
valid_values. Valid values will be set to new dictionary.

	
set_value(value, should_notify=True)

	Set the given raw value. It is checked if it is a valid value.

If not set_value will be aborted and an error message will be
displayed.

Characteristic.setter_callback
You may also define a setter_callback on the Characteristic.
This will be called with the value being set as the arg.

See also

Characteristic.value

	Parameters

	
	value (Depends on properties["Format"]) – The value to assign as this Characteristic’s value.

	should_notify (bool) – Whether a the change should be sent to
subscribed clients. Notify will be performed if the broker is set.

	
to_HAP()

	Create a HAP representation of this Characteristic.

Used for json serialization.

	Returns

	A HAP representation.

	Return type

	dict

	
to_valid_value(value)

	Perform validation and conversion to valid value.

	
valid_value_or_raise(value)

	Raise ValueError if PROP_VALID_VALUES is set and the value is not present.

Loader

Useful for creating a Service or Characteristic.

	
class pyhap.loader.Loader(path_char='/home/docs/checkouts/readthedocs.org/user_builds/hap-python/checkouts/stable/pyhap/resources/characteristics.json', path_service='/home/docs/checkouts/readthedocs.org/user_builds/hap-python/checkouts/stable/pyhap/resources/services.json')

	Looks up type descriptions based on a name.

See also

pyhap/resources/services.json

See also

pyhap/resources/characteristics.json

	
classmethod from_dict(char_dict=None, serv_dict=None)

	Create a new instance directly from json dicts.

	
get_char(name)

	Return new Characteristic object.

	
get_service(name)

	Return new service object.

Service

Service Base class for a HAP Accessory.

	
class pyhap.service.Service(type_id, display_name=None, unique_id=None)

	A representation of a HAP service.

A Service contains multiple characteristics. For example, a
TemperatureSensor service has the characteristic CurrentTemperature.

	
add_characteristic(*chars)

	Add the given characteristics as “mandatory” for this Service.

	
add_linked_service(service)

	Add the given service as “linked” to this Service.

	
configure_char(char_name, properties=None, valid_values=None, value=None, setter_callback=None, getter_callback=None)

	Helper method to return fully configured characteristic.

	
classmethod from_dict(name, json_dict, loader)

	Initialize a service object from a dict.

	Parameters

	json_dict (dict) – Dictionary containing at least the keys UUID and
RequiredCharacteristics

	
get_characteristic(name)

	Return a Characteristic object by the given name from this Service.

	Parameters

	name (str) – The name of the characteristic to search for.

:raise ValueError if characteristic is not found.

	Returns

	A characteristic with the given name.

	Return type

	Characteristic

	
to_HAP()

	Create a HAP representation of this Service.

	Returns

	A HAP representation.

	Return type

	dict.

State

	
class pyhap.state.State(*, address: Union[str, List[str], None] = None, mac=None, pincode=None, port=None)

	Class to store all (semi-)static information.

That includes all needed for setup of driver and pairing.

	
add_paired_client(client_username_bytes: bytes, client_public: bytes, perms: bytes) → None

	Add a given client to dictionary of paired clients.

	Parameters

	
	client_username_bytes (bytes) – The client’s user id bytes.

	client_public (bytes) – The client’s public key
(not the session public key).

	
address

	Return the first address for backwards compat.

	
increment_config_version()

	Increment the config version.

	
is_admin(client_uuid: uuid.UUID) → bool

	Check if a paired client is an admin.

	
paired

	Return if main accessory is currently paired.

	
remove_paired_client(client_uuid: uuid.UUID) → None

	Remove a given client from dictionary of paired clients.

	Parameters

	client_uuid (uuid.UUID) – The client’s UUID.

	
set_accessories_hash(accessories_hash)

	Set the accessories hash and increment the config version if needed.

Util

Utilities Module

	
pyhap.util.base64_to_bytes(str_input) → bytes

	

	
pyhap.util.byte_bool(boolv)

	

	
pyhap.util.callback(func)

	Decorator for non blocking functions.

	
pyhap.util.event_wait(event, timeout)

	Wait for the given event to be set or for the timeout to expire.

	Parameters

	
	event (asyncio.Event) – The event to wait for.

	timeout (float) – The timeout for which to wait, in seconds.

	Returns

	event.is_set()

	Return type

	bool

	
pyhap.util.from_hap_json(json_str)

	Convert json to an object.

	
pyhap.util.generate_mac()

	Generates a fake mac address used in broadcast.

	Returns

	MAC address in format XX:XX:XX:XX:XX:XX

	Return type

	str

	
pyhap.util.generate_pincode()

	Generates a random pincode.

	Returns

	pincode in format xxx-xx-xxx

	Return type

	bytearray

	
pyhap.util.generate_setup_id()

	Generates a random Setup ID for an Accessory or Bridge.

Used in QR codes and the setup hash.

	Returns

	4 digit alphanumeric code.

	Return type

	str

	
pyhap.util.get_local_address() → str

	Grabs the local IP address using a socket.

	Returns

	Local IP Address in IPv4 format.

	Return type

	str

	
pyhap.util.hap_type_to_uuid

	Convert a HAP type to a UUID.

	
pyhap.util.is_callback(func)

	Check if function is callback.

	
pyhap.util.iscoro(func)

	Check if the function is a coroutine or if the function is a functools.partial,
check the wrapped function for the same.

	
pyhap.util.long_to_bytes(n)

	Convert a long int to bytes

	Parameters

	n (int) – Long Integer

	Returns

	long int in bytes format.

	Return type

	bytes

	
pyhap.util.to_base64_str(bytes_input) → str

	

	
pyhap.util.to_hap_json(dump_obj)

	Convert an object to HAP json.

	
pyhap.util.to_sorted_hap_json(dump_obj)

	Convert an object to sorted HAP json.

	
pyhap.util.uuid_to_hap_type

	Convert a UUID to a HAP type.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyhap	

 	
 	
 pyhap.util	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X

A

 	
 	accessories_hash (pyhap.accessory_driver.AccessoryDriver attribute)

 	Accessory (class in pyhap.accessory)

 	AccessoryDriver (class in pyhap.accessory_driver)

 	add_accessory() (pyhap.accessory.Bridge method)

 	(pyhap.accessory_driver.AccessoryDriver method)

 	add_characteristic() (pyhap.service.Service method)

 	add_info_service() (pyhap.accessory.Accessory method)

 	add_job() (pyhap.accessory_driver.AccessoryDriver method)

 	add_linked_service() (pyhap.service.Service method)

 	add_paired_client() (pyhap.state.State method)

 	add_preload_service() (pyhap.accessory.Accessory method)

 	
 	add_protocol_version_service() (pyhap.accessory.Accessory method)

 	add_service() (pyhap.accessory.Accessory method)

 	address (pyhap.state.State attribute)

 	async_add_job() (pyhap.accessory_driver.AccessoryDriver method)

 	async_persist() (pyhap.accessory_driver.AccessoryDriver method)

 	async_send_event() (pyhap.accessory_driver.AccessoryDriver method)

 	async_start() (pyhap.accessory_driver.AccessoryDriver method)

 	async_stop() (pyhap.accessory_driver.AccessoryDriver method)

 	async_subscribe_client_topic() (pyhap.accessory_driver.AccessoryDriver method)

 	async_update_advertisement() (pyhap.accessory_driver.AccessoryDriver method)

 	available (pyhap.accessory.Accessory attribute)

B

 	
 	base64_to_bytes() (in module pyhap.util)

 	
 	Bridge (class in pyhap.accessory)

 	byte_bool() (in module pyhap.util)

C

 	
 	callback() (in module pyhap.util)

 	Characteristic (class in pyhap.characteristic)

 	client_update_value() (pyhap.characteristic.Characteristic method)

 	
 	config_changed() (pyhap.accessory_driver.AccessoryDriver method)

 	configure_char() (pyhap.service.Service method)

 	connection_lost() (pyhap.accessory_driver.AccessoryDriver method)

E

 	
 	event_wait() (in module pyhap.util)

F

 	
 	finish_pair() (pyhap.accessory_driver.AccessoryDriver method)

 	from_dict() (pyhap.characteristic.Characteristic class method)

 	(pyhap.loader.Loader class method)

 	(pyhap.service.Service class method)

 	
 	from_hap_json() (in module pyhap.util)

G

 	
 	generate_mac() (in module pyhap.util)

 	generate_pincode() (in module pyhap.util)

 	generate_setup_id() (in module pyhap.util)

 	get_accessories() (pyhap.accessory_driver.AccessoryDriver method)

 	get_char() (pyhap.loader.Loader method)

 	get_characteristic() (pyhap.accessory.Accessory method)

 	(pyhap.accessory.Bridge method)

 	(pyhap.service.Service method)

 	
 	get_characteristics() (pyhap.accessory_driver.AccessoryDriver method)

 	get_local_address() (in module pyhap.util)

 	get_service() (pyhap.accessory.Accessory method)

 	(pyhap.loader.Loader method)

 	get_value() (pyhap.characteristic.Characteristic method)

H

 	
 	hap_type_to_uuid (in module pyhap.util)

I

 	
 	increment_config_version() (pyhap.state.State method)

 	is_admin() (pyhap.state.State method)

 	
 	is_callback() (in module pyhap.util)

 	iscoro() (in module pyhap.util)

L

 	
 	load() (pyhap.accessory_driver.AccessoryDriver method)

 	
 	Loader (class in pyhap.loader)

 	long_to_bytes() (in module pyhap.util)

N

 	
 	notify() (pyhap.characteristic.Characteristic method)

O

 	
 	override_properties() (pyhap.characteristic.Characteristic method)

P

 	
 	pair() (pyhap.accessory_driver.AccessoryDriver method)

 	paired (pyhap.state.State attribute)

 	persist() (pyhap.accessory_driver.AccessoryDriver method)

 	
 	prepare() (pyhap.accessory_driver.AccessoryDriver method)

 	publish() (pyhap.accessory.Accessory method)

 	(pyhap.accessory_driver.AccessoryDriver method)

 	pyhap.util (module)

R

 	
 	remove_paired_client() (pyhap.state.State method)

 	run() (pyhap.accessory.Accessory method)

 	(pyhap.accessory.Bridge method)

 	
 	run_at_interval() (pyhap.accessory.Accessory static method)

S

 	
 	Service (class in pyhap.service)

 	set_accessories_hash() (pyhap.state.State method)

 	set_characteristics() (pyhap.accessory_driver.AccessoryDriver method)

 	set_info_service() (pyhap.accessory.Accessory method)

 	set_primary_service() (pyhap.accessory.Accessory method)

 	set_value() (pyhap.characteristic.Characteristic method)

 	setup_message() (pyhap.accessory.Accessory method)

 	
 	setup_srp_verifier() (pyhap.accessory_driver.AccessoryDriver method)

 	signal_handler() (pyhap.accessory_driver.AccessoryDriver method)

 	start() (pyhap.accessory_driver.AccessoryDriver method)

 	start_service() (pyhap.accessory_driver.AccessoryDriver method)

 	State (class in pyhap.state)

 	stop() (pyhap.accessory.Accessory method)

 	(pyhap.accessory.Bridge method)

 	(pyhap.accessory_driver.AccessoryDriver method)

T

 	
 	to_base64_str() (in module pyhap.util)

 	to_HAP() (pyhap.accessory.Accessory method)

 	(pyhap.accessory.Bridge method)

 	(pyhap.characteristic.Characteristic method)

 	(pyhap.service.Service method)

 	
 	to_hap_json() (in module pyhap.util)

 	to_sorted_hap_json() (in module pyhap.util)

 	to_valid_value() (pyhap.characteristic.Characteristic method)

U

 	
 	unpair() (pyhap.accessory_driver.AccessoryDriver method)

 	
 	update_advertisement() (pyhap.accessory_driver.AccessoryDriver method)

 	uuid_to_hap_type (in module pyhap.util)

V

 	
 	valid_value_or_raise() (pyhap.characteristic.Characteristic method)

X

 	
 	xhm_uri() (pyhap.accessory.Accessory method)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to HAP-python’s documentation!

_static/ajax-loader.gif

